
SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 17 FLORIDA STATE UNIVERSITY

4

File Formats

This chapter describes all the file formats currently supported by SciAn, giving details

on the implementation and any special controls they may use.

Because file formats appear more quickly than manual revisions, SciAn may have

additional file formats which are not covered here. To find out about any additional

file formats, look on the f tp server (f tp.scri.fsu.edu) in the

pub/SciAn/technotes directory.

File readers

As described in the user’s manual, file readers are SciAn objects whose purpose it is

to read datasets from files. A file reader typically reads one type of file which can be

identified by its file name extension, the portion of the file name which is after the last

period in the name.

All file readers have control panels. To see a control panel, choose Show File

Readers from the File menu. A window will come up showing icons for all the file

readers. Select the reader of interest and press the Show Controls button.

All file readers have a text box in their control panel to change the extension which

indicates this particular file type. To change it, enter the new extension in the text box

and press the Enter key.

Depending on the file type, file readers can read several datasets from one file, or

different timesteps of a dataset from several files. Some file readers are inherently

able to read time-dependent data. For others, it is usually possible to read time-

dependent data using a naming convention. Simply keep the timesteps as separate

datasets, and name them each with a string of the form name@time, where name is the

name of the time-dependent dataset, and time is the time of this particular time step.

The time can be a real number, in which case it is interpreted as a real number of

seconds since midnight, or it can be a 24-hour clock time (e.g. 12:03). A check box

in the file reader’s control panel selects whether this feature is enabled or not.

All control panels also have a Save All Settings button. Pressing this button saves all

the settings of the file reader so that they are read the next time SciAn is started.

Settings are saved in a directory called .scianSettings in your home directory. If

the directory does not exist, it will be created automatically. Each setting file is a

fragment of a script which gives a snapshot of the important variables in the file

reader.

Additional controls for particular file readers are described in the following sections.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 18 FLORIDA STATE UNIVERSITY

G90 (Gaussian 90) format

This information will be supplied Really, Really Soon Now.

HDF (Hierarchical Data Format)

The Hierarchical Data Format (HDF) is a file format for storing self-descriptive

datasets which was developed at the National Center for Supercomputing Applications

at the University of Illinois at Urbana-Champaign. SciAn uses the Scientific Data Set

(SDS) capability of HDF to store multidimensional data over rectilinear Cartesian

grids. Extensions are included for time-dependent data, vector data, and missing data

points. [We’re working on VSET for non-structured grids, too. -EMP]

HDF files are written and read using a library, which must be compiled and linked

into SciAn as well as into any program which writes HDF files. There are several

versions available for a variety of machines.

Obtaining HDF

This information is provided for your information only. We didn’t write HDF and

aren’t responsible for maintaining it. However, we think it’s great and are grateful to

NCSA for making such a useful tool available to the research community.

The HDF library and documentation are available directly from NCSA via

anonymous ftp from ftp.ncsa.uiuc.edu.

Once it has been downloaded, it must be compiled. Refer to the NCSA documentation

for information on compiling it. When compiled, you will have a library called

libdf.a, which must be linked into SciAn and into any programs which are to write

HDF files. Copy this library to the /usr/local/bin directory.

To recompile SciAn with the HDF library do make INSTALL, which will ask you

whether you want to install the HDF library. Then recompile SciAn by doing make.

Note The SciAn makefile looks for libraries in /lib, /usr/lib, and /usr/local/lib. If for

some reason you cannot put the HDF library in one of these directories or you cannot call

it libdf.a, you should be able to hack SciAn to be able to find them anyway. Look in

lfiles.*.make.

Writing HDF files

Detailed information on writing HDF SDS files is provided in the documentation

from NCSA. As SciAn does not use all the facilities of HDF and also contains

extensions, this section briefly explains the process of writing an HDF file, describing

in particular extensions and restrictions on the way SciAn handles HDF files. All

routines that begin with DFSD mentioned here are HDF routines, and you can get

more information about them by looking in the HDF documentation.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 19 FLORIDA STATE UNIVERSITY

The HDF SDS format supported by SciAn can express scalar and vector fields

defined over rectilinear Cartesian grids with one or more dimensions. It can deal with

missing data points and time dependency.

Before you write an HDF file, you must have this information:

• The name you want the dataset to have

• The number of topological dimensions of the dataset

• For each topological dimension, the name of the axis

• For each topological dimension, the number of steps in the dimension

• For each topological dimension, the position of each step in the dimension

• If the dataset is time-dependent, the time values for every time step. This can be

expressed in time step numbers, seconds, or clock time (e.g. 12:37).

• The minimum and maximum values in the data. This is required if there are

missing data points. It is optional otherwise, but it’s still a good idea to include.

The minimum and maximum should bracket all interesting portions of the field

comfortably.

The data label as given in the DFSDsetdatastrs call is used to give the name of the

dataset. If no DFSDsetdatastrs call was issued, the file name is used instead.

The name of each axis is specified in the DFSDsetdimstrs call. The axis names will

only be read if the Read Axis Names check box is in the HDF control panel is on.

See “HDF controls” below for more information. The name of the first axis should

be X, the second Y, and the third Z. If you wish to use other axis names, you will have

to create a file named .scianAxes in your home directory. This file must contain a

series of text lines, each of the form

newAxis = oldAxis

where newAxis is the axis name to define and oldAxis is the axis to which it

corresponds. Upper and lower case differences are ignored when matching to an axis

name in a file. Here is an example .scianAxes file which defines Latitude and

Longitude as axes corresponding to X and Y in a flat Mercator projection:

#Axes file containing supplemental axes to SciAn

Longitude = X

Latitude = Y

The dimension scale as specified in DFSDsetdimscale is used to determine the

spacing along each of the axes of the grid. The spacing is always assumed to be in a

Cartesian coordinate system. If no DFSDsetdimscale call was issued, a uniform

scale is guessed from the dimensions.

Extensions to HDF

The name@time syntax can be used in the dataset name to specify a time slice. The

dataset name is given in the DFSDsetdatastrs function call. Instead of the name of

the dataset, use a string of the form name@time. For example, a dataset named Q at

317 seconds may be called Q@317. SciAn will assemble all the time steps into a single

time-dependent dataset when the timesteps are read in.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 20 FLORIDA STATE UNIVERSITY

To encode missing data in the file, use DFSDsetrange to set a reasonable maximum

and minimum for the data. Choose a single data value far outside the range to be the

missing data value. A group of radio buttons in the file reader control panel specifies

what to do with data points that fall outside the range. Data outside the range can be

used as it is, clipped to the maximum and minimum, or treated as missing data within

SciAn. For more information, see “HDF controls” below.

Warning DFSDsetrange replaces an earlier HDF command, DFSDsetmaxmin. Either will work,

depending on which version of HDF you have installed, but beware! The C usage is

different. DFSDsetmaxmin took the values as arguments, but DFSDsetrange takes the

addresses of the variables.

If the first dimension of the dataset is 2 or 3, the dataset can be read as vector instead

of scalar data. The 2 or 3 elements over the first dimension are used to form the X

and Y or X, Y, and Z components of the vector. For example, say you had a 2-D

vector field that was defined over a grid 20 by 30 units wide. Define an array to hold

the vector like this:

float vector[20][30][2];

in C or

REAL VECTOR(20, 30, 2)

in FORTRAN. Take as an example the vector at location (14, 22) in the array. Then

in C, v ector[14][22][0] holds the X component of the vector, and

vector[14][22][1] holds the Y component of the vector. In FORTRAN,

VECTOR(14, 22, 1) holds the X component and VECTOR(14, 22, 2) holds the Y

component. When writing the dataset to HDF, assume it is a dataset with three

dimensions: 14, 22, and 2. SciAn will decode the information into a vector dataset

when it is read in.

This feature works whether the vector dimension is the first or last dimension. In this

example, it works with float vector[2][20][30]; as well.

This feature can be turned on or off using a check box in the HDF file reader control

panel, as described in the next section.

HDF controls

Bring up the File Readers window by choosing Show File Readers from the File

menu. You will see a control panel like Figure 4-1.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 21 FLORIDA STATE UNIVERSITY

HDF

Read 2- and 3-Vector Data

Wrap Polar Coordinates

Compress Data

Read Axis Names

Handle Out-of-Bounds Data

Use as is

Clip to bounds

Treat as missing

Use "field@time" format for time samples

Default Extension: hdf

Save All Settings

Figure 4-1. The HDF Control Panel

The top three items are common to all file readers. At the top is a Save All Settings

button. This button allows you to save all the settings for this control panel in a file in

the .scianSettings directory in your home directory. The Default Extension text

box gives the file name extension (the portion of the file name after the dot) that

SciAn uses to recognize a file as an HDF file. Change it and press the Enter key to

specify a new extension. Do not include the dot when typing the extension. Below the

text box is a check box which allows the name@time format to be used to specify time

samples. Remember that this name is the dataset name as given by the

DFSDsetdatastrs function, not the name of the file.

Below these are controls specific to the HDF file reader. The Handle Out-of-Bounds

D a t a radio buttons control how data points outside the range given by

DFSDsetrange are treated. If Treat as missing is on, any data points outside the

range are treated as missing data. If Clip to bounds is on, data points are

automatically clipped so that they lie within the bounds. If Use as is is on, data

points are used as is. All data points which are outside the bounds will be treated as

underflow and overflow data within SciAn.

Below the radio button group is a Read Axis Names check box. If this check box is

off, the first axis will always be considered X, the second Y, and the third Z. If it is on,

the axis names will be read from the file. The axis names must have been set in the

HDF file using the DFSDsetdimstrs function. It is important that this check box be

set only if the axes have been set in the file. Otherwise, a bug in the HDF code can

cause a crash.

Next is a Compress Data check box. Normally, datasets use four bytes per data

value. When this box is on, datasets will use only one byte per value. The

corresponding values will come from a lookup table generated from the minimum

and maximum values. This significantly reduces the amount of memory used to store

the data, with the disadvantage of reducing the precision somewhat. The reduction of

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 22 FLORIDA STATE UNIVERSITY

precision can be noticed in visualizations of very smooth datasets. However, for most

real-world datasets, it does not matter.

Next is a Wrap Polar Coordinates check box. Normally, polar coordinates are simply

stretched out into a plane using the Mercator projection. When the values go through

some transitions, say from 359 to 0, there can be discontinuities in the dataset

resulting in problems with visualization objects. If this check box is on, polar

coordinates are wrapped to change monotonically.

Wrapping of polar coordinates only occurs when the fourth parameter in the

DFSDsetdatastrs call is "spherical" or "polar". It only occurs when the units

argument as set in the DFSDsetdimstrs call is "degrees", "radians", or

"gradians".

At the bottom is a Read 2- and 3-Vector Data check box, which controls whether 2-

and 3-vector datasets are read using the dimension convention listed above.

Example code

Following is an example of writing an HDF file.

/*exampleHDF.c

 Example program to write an HDF file

 Compile

 cc exampleHDF.c -lm -ldf -o exampleHDF

 Eric Pepke

*/

#include <stdio.h>

#include <math.h>

#define XSIZE 50

#define YSIZE 50

#define ZSIZE 50

/*Define this if you have a newer version of HDF*/

#define NEWHDF

main()

{

 int i, j, k;

 int dimSizes[3];

 float array[XSIZE][YSIZE][ZSIZE]; /*Data array*/

 float xScale[XSIZE]; /*Scales*/

 float yScale[YSIZE];

 float zScale[ZSIZE];

 float min, max;

 /*Fill array*/

 for (i = 0; i < XSIZE; ++i)

 {

for (j = 0; j < YSIZE; ++j)

{

 for (k = 0; k < ZSIZE; ++k)

 {

array[i][j][k] = sin(((double) i) / XSIZE * 6.0)

+ sin(((double) j) / YSIZE * 8.0)

+ sin(((double) k) / ZSIZE * 10.0);

 }

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 23 FLORIDA STATE UNIVERSITY

}

 }

 min = -3.0;

 max = 3.0;

 /*Set up the dimension sizes*/

 dimSizes[0] = XSIZE;

 dimSizes[1] = YSIZE;

 dimSizes[2] = ZSIZE;

 DFSDsetdims(3, dimSizes);

 /*Set up the scales along each dimension. Here they're regularly

 spaced, but they could be irregularly spaced.*/

 for (i = 0; i < XSIZE; ++i) xScale[i] = (float) i;

 for (j = 0; j < YSIZE; ++j) yScale[j] = (float) j;

 for (k = 0; k < ZSIZE; ++k) zScale[k] = (float) k;

 DFSDsetdimscale(1, XSIZE, xScale);

 DFSDsetdimscale(2, YSIZE, yScale);

 DFSDsetdimscale(3, ZSIZE, zScale);

 /*Set up the names of the dimensions. In the current version of

 SciAn, only the axis name and the units are read, and the units are

 ignored unless the coordinate system is polar.*/

 DFSDsetdimstrs(1, "X", "meters", "E10.2");

 DFSDsetdimstrs(2, "Y", "meters", "E10.2");

 DFSDsetdimstrs(3, "Z", "meters", "E10.2");

 /*Set up the dataset information. In the current version of

 SciAn, only "field" and "cartesian" are read. Cartesian sets

 up a normal cartesian coordinate system, polar or spherical does

 a Mercator projection*/

 DFSDsetdatastrs("field", "dimensionless", "E10.2", "cartesian");

 /*Set the max and min.*/

 DFSDsetrange(&max, &min);

 /*Finally, put the data*/

 DFSDputdata("scalartest.hdf", 3, dimSizes, array);

}

NFF (Neutral File Format)

The NFF reader reads geometric objects from files in the Neutral File Format (NFF)

developed by Eric Haines [1987]. The format has been extended with a t token for

time dependence and an o token to offset subsequent objects. Lighting and viewing

tokens are ignored, and object materials are only partially supported.

An NFF file is a text file containing a series of entities. Each entity consists of a

token, which appears on a new line, followed by a series of arguments, which may

appear on the same line or on subsequent lines, depending on the particular entity.

There may be blank lines in the file.

The following sections describe all the entities supported by SciAn.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 24 FLORIDA STATE UNIVERSITY

Comment

Syntax:

text

Any line beginning with a hash mark (#) is a comment. Comments should only

appear between entities.

Cylinder or conical frustum

Syntax:

c

x1 y1 z1 radius1

x2 y2 z2 radius2

This specifies a cylinder or conical frustum starting at x1, y1, z1 and ending at x2, y2,

z2. Radius1 is the radius at the first endpoint, and radius2 is the radius at the second

endpoint. If they are the same, the object is a cylinder. If they are different, the

object is a conical frustum. Whether the end caps are shown can be determined by a

check box in the Geometry control panel.

Polygon

Syntax:

p nVertices

x1 y1 z1

x2 x2 z2

 ...

xn yn zn

Specifies a polygon with nVertices vertices. Following the token line are nVertices

line giving the vertices of the polygon. The direction of the face of the polygon is

determined by the right-hand rule.

Polygonal patch

Syntax:

pp nVertices

x1 y1 z1 nx1 ny1 nz1

x2 x2 z2 nx2 ny2 nz2

 ...

xn yn zn nxn nyn nzn

Specifies a polygon patch with nVertices vertices. Following the token line are

nVertices line giving the vertices of the polygon. The x, y, and z give the position of

each vertex, and nx, ny, and nz give the x, y, and z components of the vertex normal.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 25 FLORIDA STATE UNIVERSITY

Sphere

Syntax:

s x y z radius

Specifies a sphere with its center at x, y, z and radius radius.

Time step

Syntax:

t time

This specifies a time, which will affect all subsequent entities in the file until another t

entity appears. All entities before the first time step are assumed to be eternal. Time

must be a single real number, specifying a number of time steps.

The colors for the eternal portion of the geometry are kept together at the beginning

of the color panel. SciAn tries to reuse the colors in the portion that is time-

dependent. The safest way to make the heuristics work best is to use the same color

changes in the same order in each time step.

Fill color

Syntax:

f red green blue Kd Ks Shine T refractionIndex

Red , green, and blue give the red, green, and blue diffuse color components of

subsequent entities. Values are between 0 and 1. All the other parameters are

ignored but must be included on the line. It is easiest to make them all 0.

Colors are stored in the color palette for the geometry object, so that they can be

edited later via the palette control panel. Normally, every new f entity specifies a new

entry in the color table. However, when time dependency is used, this behaves a little

differently. See the section on the time step entity for more information.

Origin

Syntax:

o dx dy dz

Offsets subsequent entities to an origin at dx, dy, dz. This is an easy way to provide a

simple translation on subsequent entities. An o entity cancels the effect of previous o

entities. To set no offset use o 0 0 0.

Writing NFF files

Because NFF is a line-oriented text format, it is simple to write an NFF file using C or

FORTRAN. The following C example does a simple simulation of a bouncing ball

and writes the output to a file called example.nff.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 26 FLORIDA STATE UNIVERSITY

/*exampleNFF.c

 Example program to write an nff file

 Compile

 cc exampleNFF.c -o exampleNFF

 Eric Pepke

*/

#include <stdio.h>

#define FLOORMINX -2.0 /*Min x of floor*/

#define FLOORMAXX 2.0 /*Max x of floor*/

#define FLOORMINY -1.0 /*Min y of floor*/

#define FLOORMAXY 1.0 /*Max y of floor*/

#define FLOORZ 0.0 /*Min z of floor*/

#define BALLX -2.0 /*Starting x of ball*/

#define BALLY 0.0 /*Starting y of ball*/

#define BALLZ 2.0 /*Starting z of ball*/

#define BALLRADIUS 0.1 /*Radius of ball*/

#define BALLVX 1.0 /*X starting velocity of ball*/

#define BALLVY 0.0 /*Y starting velocity of ball*/

#define BOUNCE 0.8 /*Bounce coefficient*/

#define AG 10.0 /*Acceleration due to gravity*/

#define TIMESTEP 0.05 /*Time step*/

void Color(FILE *file, float r, float g, float b)

/*Sets to a color*/

{

 fprintf(file, "f %g %g %g 0 0 0 0 0\n", r, g, b);

}

void DrawFloor(FILE *file)

/*Draws the floor*/

{

 /*Color for floor*/

 Color(file, 0.0, 1.0, 1.0);

 /*Now polygon*/

 fprintf(file, "p 4\n");

 fprintf(file, "%g %g %g\n", FLOORMINX, FLOORMINY, FLOORZ);

 fprintf(file, "%g %g %g\n", FLOORMAXX, FLOORMINY, FLOORZ);

 fprintf(file, "%g %g %g\n", FLOORMAXX, FLOORMAXY, FLOORZ);

 fprintf(file, "%g %g %g\n", FLOORMINX, FLOORMAXY, FLOORZ);

}

void DrawBall(FILE *file, float bx, float by, float bz)

/*Draws the ball*/

{

 fprintf(file, "s %g %g %g %g\n", bx, by, bz, BALLRADIUS);

}

void Time(FILE *file, float t)

/*Emits a time marker*/

{

 fprintf(file, "t %g\n", t);

}

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 27 FLORIDA STATE UNIVERSITY

main()

{

 FILE *file;

 float bx, by, bz, bvx, bvy, bvz, t;

 file = fopen("example.nff", "w");

 if (file)

 {

/*First draw the floor*/

DrawFloor(file);

/*Now do the simulation*/

bx = BALLX;

by = BALLY;

bz = BALLZ;

bvx = BALLVX;

bvy = BALLVY;

bvz = 0.0;

t = 0.0;

/*Set the color once for all balls*/

Color(file, 1.0, 0.0, 0.0);

do

{

 /*Set the time step. Omit this line to keep all snapshots

 in one time step to see them all at once*/

 Time(file, t);

 /*Emit the current ball position*/

 DrawBall(file, bx, by, bz);

 /*Go to next time step. I know this is really cheesy

 integration, but it's just a demo.*/

 t += TIMESTEP;

 bvz -= TIMESTEP * AG;

 bx += bvx * TIMESTEP;

 by += bvy * TIMESTEP;

 bz += bvz * TIMESTEP;

 if (bz < (FLOORZ + BALLRADIUS))

 {

/*Bounce*/

bz = FLOORZ - bz + 2.0 * BALLRADIUS;

bvz = -bvz * BOUNCE;

 }

} while (bx >= FLOORMINX && bx <= FLOORMAXX &&

 by >= FLOORMINY && by <= FLOORMAXY);

fclose(file);

 }

 else

 {

perror("example.nff");

 }

}

PLOT3D format

The PLOT3D file reader reads files in the format of the PLOT3D fluid dynamics

visualization program [Buning et al., 1990, Walatka, et al., 1991]. This section

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 28 FLORIDA STATE UNIVERSITY

describes how the file reader works and what subset of PLOT3D files it reads. Some

familiarity with PLOT3D commands and data files is assumed.

Because PLOT3D includes file formats written by FORTRAN, SciAn must be

compiled using FORTRAN in order for the entire file reader to work. During the

installation process (make INSTALL) the installer will detect whether a FORTRAN

compiler is present on your system. If it is not present, then only the ASCII formats

will be readable.

The PLOT3D reader supports files with multiple grids. However, as there is currently

no way within SciAn of handling multiple grids as a single dataset [yet! -EMP], the

individual segments are treated as separate datasets.

The PLOT3D metafile

When reading files from within PLOT3D, one normally types in a series of commands

which assemble the file. This is not the way files are read from within SciAn, so there

is a metafile mechanism to read the files.

A metafile is a short ASCII script which contains PLOT3D read commands. You will

need to make one metafile for every group of PLOT3D files you wish to read as a

single unit. The filename extension of the metafile should be .p3d. The lines in the

metafile will refer to other files that contain the actual data, and these can be named

what you like.

Each line of a metafile is a single PLOT3D READ command. A metafile may contain

any number of READ commands but should at least contain enough to read a single

grid (XYZ) file and at least one Q or FUNCTION file. Each read command is of the

form:

READ/qualifier1/qualifier2...

The main purpose of qualifiers is to specify the path of data files, data format and

operations to be done on the data. To avoid ambiguity, qualifiers describing a file

must precede the qualifier that specifies the file path name. At most one qualifier in

its group may be used for any data file.

If certain qualifier is not specified for a file, then it inherits the qualifier of the

previous file. If this happens to the first file, then the default is assumed.

It is illegal to specify inconsistent qualifiers for a Q or FUNCTION file and its

corresponding XYZ file. For example, if a Q file is described as 3D then it is an error

to have its corresponding XYZ file qualified as 1D or 2D. It is suggested that all the Q

or FUNCTION files using the same XYZ file as grid be placed in the same READ

command and the qualifiers common to the data files be placed only once at the

beginning of the READ command.

There must be exactly one XYZ file specification in a single READ command. If you

need to use another XYZ file, use a separate READ command. There may be any

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 29 FLORIDA STATE UNIVERSITY

number of Q or FUNCTION files that correspond to the one XYZ file. The Q,

FUNCTION, and XYZ files may appear in any order.

If a READ command needs to be separated into two or more lines, a hyphen '-' must

follow the end of the previous line to indicate the continuation of the command on

the next line.

The reader is not sensitive to case (except in file names) and recognizes abbreviations

for each qualifier.

PLOT3D reference

The following is a list of all the qualifiers recognized by the SciAn PLOT3D file

reader:

/1D

/2D

/3D

One of these qualifiers specifies the number of topological and spatial dimensions of

the dataset. If none is given, /3D is assumed.

/XYZ="fileName"

This asks the READ command to read an XYZ (grid) file from the file named

fileName. You can use a complete pathname, or a single name relative to the current

directory. The file name must be enclosed in double quotes.

/Q="fileName"

This asks the READ command to read a Q file from the file named fileName. You can

use a complete pathname, or a single name relative to the current directory. The file

name must be enclosed in double quotes.

/FUNCTION="fileName"

This asks the READ command to read a FUNCTION file from the file named fileName.

A FUNCTION file contains a single scalar or vector dataset, possibly defined over

multiple grids. You can use a complete pathname, or a single name relative to the

current directory. The file name must be enclosed in double quotes.

/MDATASET

This specifies that there are multiple datasets in a single file. The default assumption is

that there is only one dataset per file.

/MGRID

This specifies that there are multiple grids in a single file. The default assumption is

that there is only one grid per file.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 30 FLORIDA STATE UNIVERSITY

/FORMATTED

/UNFORMATTED

/BINARY

This specifies the format of subsequent files. /FORMATTED is an ASCII file format

and is optimal for transportability across machines. It is also the only supported

format if the machine on which you compiled SciAn did not have a FORTRAN

compiler. /UNFORMATTED is a more compact binary file format which typically

cannot be transported across machines. /UNFORMATTED is the default. /BINARY is not

supported.

/PLANES

/WHOLE

This specifies the arrangement of data in subsequent files. /WHOLE is the default and

specifies that the datasets are stored as a single unit. If /PLANES is specified,

individual planes across the last dimension are stored subsequently in the file.

/CHECK

/NOCHECK

This specifies whether Q files should be checked for zero or negative density or

pressure while they are being read in. By default, they are checked, and negative

values are raised to zero. If there are any zero or negative values, a message will be

printed during the reading of the file.

/JACOBIAN

/NOJACOBIAN

This specifies whether Q variables are scaled by the determinant of the metric

Jacobian. It is not implemented.

/BLANK

/NOBLANK

This determines whether subsequent XYZ files contain a fourth array, an integer

IBLANK array, to specify blank locations on the grid. Data which corresponds to an

IBLANK of 0 is treated as missing in SciAn.

Example

Here is an example of a PLOT3D metafile:

READ/UNFORMATTED/MDATASET/MGRID/XYZ="/user/hwu/xyz.dat"-
 /q="/user/hwu/q.dat"-
 /function="/user/hwu/function.dat"

This read command specifies a Q dataset and a FUNCTION dataset with both of them

using the same XYZ grid. For attributes not specified, defaults are assumed. These

include /3D, /WHOLE, /CHECK, /NOJACOBIAN, and /NOBLANK.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 31 FLORIDA STATE UNIVERSITY

PDB (Protein Data Bank) format

The PDB (Protein Data Bank) file reader reads a subset of the information in files in

the Protein Data Bank at Brookhaven National Laboratories [Brookhaven 1992]. It is

only partially implemented. We are still working on visualization of chemistry data

sets and are still trying to figure out the best way to represent the information

internally. For now, the PDB file reader allows the atoms to be read and displayed

using the Balls visualization object as colored, sized balls. We are working on ball and

stick and ribbon visualization objects, but they are not yet complete. One of the

problems that we have is that we are not chemistry experts and find some of the

terminology and ideas difficult. If you have expertise in chemistry, we may be

interested in collaborating with you.

The default file name extension for Protein Data Bank files is .ent, to correspond to

the data bank files as distributed by Brookhaven.

A Protein Data Bank file is a series of text lines which resemble the contents of a

deck of Hollerith punched cards. Each text contains a single record which gives

information on the protein. At the beginning of each line is a six character code

which determines what kind of record this is.

Record summary

The following is a listing of all the records recognized by the SciAn protein data bank

file reader. All other record types are quietly ignored. Column numbers start at 1 for

the first column on the very left of the line.

Record Type Columns Value

ATOM 7-11 Atom serial number

13-16 Atom name

17 Alternate location indicator (ignored)

18-20 Residue name (ignored)

22 Chain identifier (ignored)

23-26 Residue sequence number

27 Code for insertions of residues (ignored)

31-38 X orthogonal coordinate in Angstroms

39-46 Y orthogonal coordinate in Angstroms

47-54 Z orthogonal coordinate in Angstroms

55-60 Occupancy

61-66 Temperature factor

68-70 Footnote number (ignored)

The atom name is parsed to find the name of the atom and the remoteness indicator.

Parsing is done according to the rules in Appendix B of [Brookhaven 1992] with

additional heuristics to parse other formats that have been seen in the Protein Data

Bank. The name of the atom is used to find the atomic number. The X, Y, and Z

values, the atomic number, the occupancy and the temperature factor are used to

construct datasets (see “Dataset construction” later in this section). The residue

sequence number and remoteness indicator are used to construct residue information,

but there is currently no way to visualize residues.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 32 FLORIDA STATE UNIVERSITY

Record Type Columns Value

AUTHOR 9-10 Continuation field (ignored)

11-70 Names of contributors

All the authors in the file are collected and are available in the control panels of all

the datasets created from the file.

Record Type Columns Value

COMPND 9-10 Continuation field

11-70 Name of macromolecule

The first COMPND line is used to give the name of the compound. The name is

shortened by using only the portion up to the first open parenthesis and is used as

part of the name of all datasets produced by the file.

Record Type Columns Value

CONECT 7-11 Serial number

12-16 Covalent bond

17-21 Covalent bond

22-26 Covalent bond

27-31 Covalent bond

32-36 Hydrogen bond where this atom is an acceptor

37-41 Hydrogen bond where this atom is an acceptor

42-46 Salt bridge where this atom has excess + charge

47-51 Hydrogen bond where this atom is a donor

52-56 Hydrogen bond where this atom is a donor

57-61 Salt bridge where this atom has excess – charge

All the CONECT records are used to define all the bonds between atoms. No distinction

is made between the kinds of bonds. There is currently no way to visualize bonds, and

there will not be until the ball and stick visualization object is complete.

Record Type Columns Value

EXPDTA 11-70 Experimental technique

All the EXPDTA lines in the file are collected and are available in the control panels of

all the datasets created from the file.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 33 FLORIDA STATE UNIVERSITY

Record Type Columns Value

HETATM 7-11 Atom serial number

13-16 Atom name

17 Alternate location indicator (ignored)

18-20 Residue name (ignored)

22 Chain identifier (ignored)

23-26 Residue sequence number

27 Code for insertions of residues (ignored)

31-38 X orthogonal coordinate in Angstroms

39-46 Y orthogonal coordinate in Angstroms

47-54 Z orthogonal coordinate in Angstroms

55-60 Occupancy

61-66 Temperature factor

68-70 Footnote number (ignored)

The HETATM record is used exactly the same way as the ATOM record.

Record Type Columns Value

JRNL 11-70 Literature citation

All the JRNL lines in the file are collected and are available in the control panels of all

the datasets created from the file. At some point we may make this more intelligent, so

that it produces nicely formatted journal references.

Record Type Columns Value

REMARK 8-10 Remark number (ignored)

12-70 Remark text

All the remarks in the file are collected and are available in the control panels of all

the datasets created from the file.

Record Type Columns Value

SOURCE 9-10 Continuation field (ignored)

11-70 Text describing source of macromolecule

All the SOURCE lines in the file are collected and are available in the control panels of

all the datasets created from the file.

Dataset construction

The information in the file is used to construct a number of datasets.

First, the orthogonal coordinates of all the atoms are used to construct a single 1-

dimensional unstructured grid. The grid points correspond to serial numbers of

atoms. If an atom is missing, then its grid point is declared as missing data.

If there are no CONECT records in the file, then the bonds are guessed simply by

considering any two atoms closer than 1.7 Angstroms to be bonded together. The

bond information is stored as the links (or 1-edges) information in the unstructured

grid.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 34 FLORIDA STATE UNIVERSITY

Four numerical datasets that share the common grid are produced from each file,

each named by the compound name concatenated with another string which describes

the dataset. The Atoms dataset contains atomic numbers that correspond with the grid

points. It is colored with a color palette that maps atomic numbers onto atom colors.

The Radii dataset contains atomic radii for all the atoms. It is set up so that, when the

Atoms dataset is visualized using the Balls visualization object, the Radii dataset is

used to determine the size of the balls. The Temp Factor dataset contains the

temperature factor. The Occupancy dataset contains the occupancy for all the atoms.

Atom parameters

Atom names, weights, atomic radii, and colors are contained in the file

ScianPeriodicTable.h, which is compiled into SciAn. The names and weights

were copied by hand from a printed periodic table. The radii are taken from the CRC

manual [Weast 1989]. Some period 0 elements and actinides were missing from the

manual. The former were given the same radius as neon, and the latter were given the

same radius at plutonium. These radii tend to be a bit on the large side when looking

at organic molecules. It is easy to reduce the scaling factor for size from within the

Size control panel in the Balls visualization object.

STF (Simple Text Format)

STF (Simple Text Format) is an easy way to write scalar and vector datasets defined

over regular or curvilinear grids. Because it is a text format it is not as compact as

formats such as HDF, but it can be used without a library, and it can do curvilinear

grids, which HDF cannot. By default, STF files are recognized by the .stf

extension.

An STF file is a text file containing statements separated by newlines. Each statement

begins with a single word token at the beginning of the line which gives the purpose

of the statement. The statement may have arguments, which appear after the

statement token. For most statements, all the arguments must appear on the same line

as the statement. Exceptions are noted later. Normally, all of the statements in a

single file make up a single dataset or timestep of a dataset. However, you can use the

END statement to separate several datasets or timesteps within a single file.

Any line that begins with a hash mark (#) is assumed to be a comment and is ignored.

Background concepts

In order to understand how the STF reader works, it is important to understand some

background concepts about grids and datasets. Most of this information is described

in the user’s manual, but it is summarized here.

The kind of datasets that STF can read are made up of data defined over grids. The

grid gives the location of the data points and connectivity between them.

For the purposes of STF, there are two types of grids: regular and curvilinear. In a

regular grid, all the cells are the same shape, and the axes of the grid are aligned with

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 35 FLORIDA STATE UNIVERSITY

the principal axes of the Cartesian space. In a curvilinear grid, each cell can be a

different shape, and the axes in a grid can bend in space any way desired.

Grids (or lattices) have two kinds of dimensions: topological and spatial. Some people

call topological dimensions “computational” dimensions instead. The topological

dimensionality of a grid is given by how many numbers are needed to represent a

unique point on the grid. The spatial dimensionality of a grid is given by how many

numbers are needed to represent the position of the points in space.

In regular grids, the topological dimensionality is always the same as the spatial

dimensionality. In curvilinear grids, it need not be. For example, a grid over a flat

sheet of rubber which locates points on the surface of the paper has two topological

dimensions and two spatial dimensions. However, if you wrapped that sheet of rubber

around a sphere to locate points on the surface of the sphere, you would have a grid

still with two topological dimensions but three spatial dimensions.

The data defined over the grid can be scalar or vector. For scalar datasets, such as

temperature over an area of terrain, there is just a single real number at each grid

point. For vector datasets, such as wind velocity within a cell of air, there are several

numbers at each grid point which give components of the vector along the principal

Cartesian axes. Individual data points can be missing.

The process of writing an STF file consists of constructing a series of statements

which together comprise a dataset. First, the header of the dataset is given. Next, the

dataset is defined. Then, additional optional information for curvilinear grids may be

added. Finally, the dataset is completed with an END statement. (If the dataset is the

last one in the file, the END statement is not needed.)

Writing the header

The first thing to do in the file is to write the name of the dataset. Do this using a

statement of the form

NAME name

where name is the name of the dataset. If the dataset is time dependent, put the

timestep here using a statement of the form

TIME time

where time is the time of this time step. If this is a static dataset, leave this out.

Next, specify the rank of the grid using a statement of the form

RANK nDimensions

where nDimensions is the number of topological dimensions. Then give the

dimensions themselves, with a statement of the form

DIMENSIONS iDim jDim ...

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 36 FLORIDA STATE UNIVERSITY

where iDim, jDim, kDim, etc. are the first, second, third, etc. topological dimensions.

For example, a 20 by 30 dataset would have RANK 2 and DIMENSIONS 20 30.

Next, set the bounds of the grid. The bounds consist of the minimum and maximum

spatial bounds of the grid. Set the bounds with a statement of the form

BOUNDS xMin xMax yMin yMax ...

If the grid is a regularly spaced grid, this is all that you have to do to define the grid.

Each topological dimension is assumed to correspond to a spatial dimension, and the

grid is assumed to be regularly spaced within the bounds.

If you really want a curvilinear or irregular grid, you will need to define the grid later.

(See “Writing the grid,” below.) In this case, the BOUNDS statement is optional.

Writing the data

The individual data points must be ordered linearly in the file, one after the other.

Before writing the data, you must specify how they will be ordered. Do this using one

of two statements:

ORDER COLUMN

ORDER ROW

The difference between column and row ordering is which index moves the fastest

when stepping through the data points. If the first index moves the fastest, it is column

ordering. If the last index moves the fastest, it is row ordering.

If you are writing the loops explicitly to write your data, you can control whether row

or column order is used. If you want to let FORTRAN determine the order and not

use subscripts at all, column ordering will be used. The following FORTRAN

fragments illustrate the difference:

␣␣␣␣␣␣REAL A(20, 30)

C COLUMN ORDER
 DO 10 J = 1, 30
 DO 20 I = 1, 20
 WRITE (*,*) A(I, J)
 20 CONTINUE
 10 CONTINUE

C ROW ORDER
 DO 30 I = 1, 20
 DO 40 J = 1, 30
 WRITE (*,*) A(I, J)
 40 CONTINUE
 30 CONTINUE

C IMPLICIT COLUMN ORDER, CHOSEN BY FORTRAN
 WRITE (*,*) A

Next, determine whether the dataset is scalar or vector. If it is scalar, include a single

statement like this:

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 37 FLORIDA STATE UNIVERSITY

SCALAR

If it is vector, include a statement of the form

VECTOR nComponents

where nComponents is the number of components in each vector. You will also need

to specify how the components are stored, with one of the following two statements:

INTERLACED

NONINTERLACED

The vector components are said to be interlaced when all the components for a vector

at a single grid point are stored together. For example, if there are 3 components to

each vector, you will write x, y, z triplets one after the other. They are said to be

noninterlaced when each component is stored separately. For example, you will write

all the x components, all the y components, and so on.

The last thing to do in specifying the dataset is to write all the data points as text

numbers in the order specified by the ORDER, INTERLACED, and NONINTERLACED

statements. First write a

DATA

statement on a line by itself. On subsequent lines, write each number in any

FORTRAN F, E, or G format or any C %f, %e, or %g format. Separate the numbers

with any number of spaces, tabs, or new lines. Use as many or as few lines as you like.

As long as they are in the correct order and the count is correct, it will work.

You can use the word MISSING or the letter M in place of any individual data point to

indicate missing data. If a vector value is missing, all of its components should be

listed as MISSING.

Writing the grid

If your grid is curvilinear or irregular, you will need to write out the positions of all

the points in the grid. Writing out a grid is very similar to writing out a vector dataset

as described in the previous section. The number of components in each vector is the

same as the number of spatial dimensions of the grid.

First specify the order with ORDER ROW or O RDER COLUMN. Then specify

INTERLACED or NONINTERLACED. Then specify that there is to be vector data with a

VECTOR nSpatialDimensions statement.

Finally, write out the points of all the grid points as if you were writing a vector field.

First use the statement

GRID

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 38 FLORIDA STATE UNIVERSITY

on a line by itself to indicate that a grid is to follow. Then, as in the arguments to the

DATA section above, write the locations of all grid points as if writing a vector field.

If you include a grid, the BOUNDS statement in the header is not needed. The bounds

will automatically be calculated from the grid.

The grid specification can also appear before the dataset is defined. Either way

works.

STF statement reference

Here is a list of all the statements in the STF file format:

BOUNDS xMin xMax yMin yMax ...

This gives the bounds, or the extent within Cartesian space, of the grid. This can also

be thought of as the smallest box that can fit around the grid. There must be as many

pairs as the spatial dimensionality of the grid. If a GRID statement is used, this is the

number of components of the grid. Also, if GRID is used, the BOUNDS may be

omitted, in which case they will be calculated automatically. If GRID is not specified,

the number of spatial dimensions is assumed to be the same as RANK and a regular

grid is constructed from BOUNDS, DIMENSIONS, and RANK.

DATA

data...

This gives all the data for the dataset in the order defined by ORDER and INTERLACED

or NONINTERLACED. The data is freeform text real numbers separated by white space,

beginning on the line right after DATA and continuing until all the data points have

been given. Each data point may be the word MISSING or just the letter M to specify

that the data is missing at that point.

DIMENSIONS iDim jDim ...

This gives the topological dimensions of the grid. There should be as many

dimensions as the number given by RANK. For example, a 20 by 50 grid should have

DIMENSIONS 20 50.

END

The END statement the end of a dataset. After an END occurs, you can start a new

dataset. If the dataset is the last dataset in the file, the END statement is not needed.

GRID

grid data...

The format of this is just like DATA, but it gives vector data specifying the positions of

all the grid points. This must be vector data, and a VECTOR statement must precede

the GRID statement.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 39 FLORIDA STATE UNIVERSITY

INTERLACED

This specifies that subsequent vector data in a DATA or GRID statement is interlaced.

In interlaced data, all components for the first grid point appear, then all components

for the second, and so on.

NAME name

This gives the name of the dataset. If it is not present, the name of the previous

dataset in the file is used. This is handy for including several timesteps within one file,

as the name needs to be specified only once. If the dataset is the first one in the file,

the name is constructed from the file name.

NONINTERLACED

This specifies that subsequent vector data in a DATA or G RID statement is not

interlaced. In non-interlaced data, all the first components in the dataset appear, then

all the second components, and so on.

ORDER COLUMN

ORDER ROW

These specify column- or row-major ordering for data in subsequent DATA or GRID

statements. The default is column-major ordering.

RANK nDimensions

This gives the number of topological dimensions of the grid. For example, a two-

dimensional grid should have RANK 2.

SCALAR

This specifies that the data after the next DATA statement is scalar data. See VECTOR.

TIME time

This specifies that the dataset is a single time step of the whole dataset at time, which is

a real number. Multiple time steps in separate datasets can be used to make a time-

dependent dataset. If there is no TIME statement, the dataset is assumed to be static.

VECTOR nComponents

This specifies that the data after the next DATA or GRID statement is vector data, with a

number of components given by the integer number nComponents.

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 40 FLORIDA STATE UNIVERSITY

Examples

Here is an example of a C program that generates a data file in the STF format:

/*exampleSTF.c

 Example program to write an STF file

 Compile

 cc exampleSTF.c -lm -o exampleSTF

 Eric Pepke

*/

#include <stdio.h>

#include <math.h>

#define XSIZE 50

#define YSIZE 50

#define ZSIZE 50

main()

{

 int i, j, k;

 FILE *outFile;

 int dimSizes[3];

 float array[XSIZE][YSIZE][ZSIZE]; /*Data array*/

 /*Fill array*/

 for (i = 0; i < XSIZE; ++i)

 {

for (j = 0; j < YSIZE; ++j)

{

 for (k = 0; k < ZSIZE; ++k)

 {

array[i][j][k] = sin(((double) i) / XSIZE * 6.0)

+ sin(((double) j) / YSIZE * 7.0)

+ sin(((double) k) / ZSIZE * 8.0);

 }

}

 }

 /*Open the file*/

 outFile = fopen("example.stf", "w");

 if (outFile)

 {

/*Print out the name, rank, dimensions, bounds*/

fprintf(outFile, "NAME field\n");

fprintf(outFile, "RANK 3\n");

fprintf(outFile, "DIMENSIONS %d %d %d\n", XSIZE, YSIZE, ZSIZE);

fprintf(outFile, "BOUNDS %g %g %g %g %g %g\n",

 0.0, (float) XSIZE - 1,

 0.0, (float) YSIZE - 1,

 0.0, (float) ZSIZE - 1);

/*It will be scalar data, in row order*/

fprintf(outFile, "SCALAR\n");

fprintf(outFile, "ORDER ROW\n");

/*Print the data*/

fprintf(outFile, "DATA\n");

for (i = 0; i < XSIZE; ++i)

{

 for (j = 0; j < YSIZE; ++j)

 {

for (k = 0; k < ZSIZE; ++k)

{

SCIAN REFERENCE MANUAL 4 FILE FORMATS

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE 41 FLORIDA STATE UNIVERSITY

 fprintf(outFile, "%g ", array[i][j][k]);

}

/*Put in a newline every row just to make it easier to

 read by a person*/

fprintf(outFile, "\n");

 }

}

fclose(outFile);

 }

 else

 {

perror("example.stf");

 }

}

There are several other examples of STF files in the demo directory.

SY format

The SY file reader (named for Saul Youssef) provides a simple way of storing 3-D

scalar datasets over regular grids. It is recommended that all new work use the STF

file reader instead, as it is almost as easy to use and is far more flexible.

An SY file is an ASCII text file containing a series of free form numbers, separated by

white space. The first three numbers are the i, j, and k dimensions of the dataset. These

three dimensions are aligned with the spatial dimensions x, y, and z.

The next six numbers give the bounds of the dataset in x, y, and z. They appear in the

order xMin, xMax, yMin, yMax, zMin, zMax.

The remaining numbers give scalar values at each point in the grid, in FORTRAN

column-major order.

